

Roll No.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING,
ANNA UNIVERSITY, CHENNAI

B.E / B. Tech (Full Time) END SEMESTER EXAMINATIONS – APR/MAY 2024

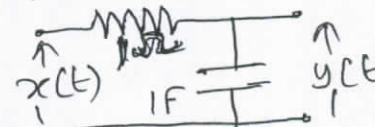
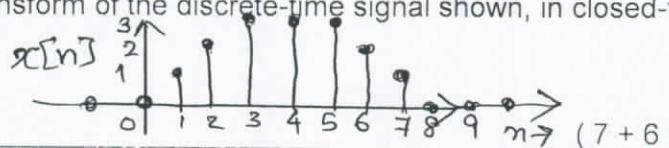
EE 5301 Signals and Systems (Regulation 2019)

Time: 3 Hr.

Answer ALL Questions

Max. Marks 100

COURSE OUTCOMES:



- CO1: To introduce the fundamentals and classifications of signals.
- CO2: To get familiarized to system representation and stability study with Laplace Transform.
- CO3: To analyze the continuous-time signals, Fourier series and to learn to apply frequency analysis.
- CO4: To impart knowledge on discrete time signals and discretized systems.
- CO5: To understand importance of sampling theorem and its implications.

PART- A (10 x 2 = 20 Marks)

Q.No	Questions	Marks	CO
1.	Plot the typical impulse response for the below cases: • Real pole on the left half of s-plane • Complex conjugate pole pair on the imaginary axis.	2	CO2
2.	Find the fundamental period of the given periodic signal: $x(t) = 0.6 \cos(5t + \pi/3) + 0.7 \sin(7t + \pi/4)$	2	CO1
3.	Give pictorial representation for the following signals: unit impulse and unit-step function. How are these two signals related?	2	CO1
4.	What is meant by 'spectral energy'?	2	CO5
5.	Distinguish between 'Zero Order Hold' and 'First order Hold'?	2	CO5
6.	Give the definition of Z-transform of a sequence $x[n]$? What is the Z-transform of the unit-impulse signal?	2	CO4
7.	What are the Fourier series components of $f(x) = \sin^2 x$?	2	CO3
8.	Find the Fourier Transform of $x(t) = 4 \delta(t)$, where $\delta(t)$ is unit impulse.	2	CO2
9.	Given $x[n] = u[n] - u[n-3]$, what is its Z-transform and ROC?	2	CO4
10.	State the Dirichlet's conditions?	2	CO3

PART- B (5 x 13 = 65 Marks)

Q.No	Questions	Marks	CO
11.	a) Consider the signal $x(t)$ shown below: i) express this signal $x(t)$ in terms of step and ramp functions, ii) Also, plot $x(t-1) + x(-t+3)$.	13	CO1
	OR		
	b) Determine whether the given systems are linear or non-linear. Also find whether they are time-varying or invariant? * $\frac{d^2y(t)}{dt^2} + 7 \frac{dy(t)}{dt} + 12 y(t) = x(t)$ * $y[n] = 4 x[n] x[n-3]$	13	CO1

12.	<p>a) i) What is the step-response of the system shown below?</p> <p>Also find the output of the system, when the input applied is $e^{-4t}u(t)$.</p> <p>ii) Perform convolution of [1 2 2 1] and [1 2 2 1]. (8 + 5)</p> <p>OR</p> <p>b) i) Given the differential equation characterizing a continuous-time system: $d^2y(t)/dx^2 + 3 dy(t)/dx + 2 y(t) = x(t)$, find the transfer function $Y(s)/X(s)$? ii) Given the initial conditions for this system as $y(0-) = 0$ and $dy(0)/dx = 1$, find the impulse response? (7 + 6)</p>	13	CO2
13.	<p>a) Obtain the Fourier series expansion of the periodic signal $x(t) = t$ for $-T/4 < t < T/4$ and $x(t) = \{T/2 - t \}$ for $T/2 > t > T/4$. Does the given signal possess odd or even symmetry? Comment.</p> <p>OR</p> <p>b) Given the signal $x(t) = e^{-2 t }$, plot the magnitude and phase spectra. Here, t refers to the magnitude of 't', i.e., equals $-t$, if $t < 0$.</p>	13	CO3
14.	<p>a) Derive the transfer function of the ZOH (Zero Order Hold) and explain the signal reconstruction technique?</p> <p>OR</p> <p>b) What is 'aliasing effect'? How is it avoided by selecting the sampling rate above the Nyquist rate? Comment on the bandwidth and cut-off frequency requirements for the reconstruction filter.</p>	13	CO5
15.	<p>a) i) Determine the causal signal $x[n]$ having the Z-transform : $X(z) = \frac{(z^2+2z+1)}{4(3z^2-7z+2)}$</p> <p>ii) Find the Z-transform of the discrete-time signal shown, in closed-form:</p> <p>(7 + 6)</p> <p>OR</p> <p>b) i) Determine the impulse response of the system described by the difference equation: $y[n]-3y[n-1]-4y[n-2]=x[n]+2x[n-1]$, using Z-transform. ii) Consider the sequence defined by $x[n] = x[n-1] + x[n-2]$, with the initial conditions: $x[0]=x[1]=1$. Find $x[5]$. (10 + 3)</p>	13	CO4

PART-C (1 x 15 = 15 Marks)

(Q. No 16 is Compulsory)

Q.No	Question	Marks	CO
16.	<p>Obtain the transfer function, pole zero locations and the state-space model for the system described by the differential equation:</p> $d^3y(t)/dt^3 + 4 d^2y(t)/dt^2 + 7 dy(t)/dt + 12 y(t) = d^2x(t)/dt^2 + 6 dx(t)/dt + 5 x(t).$ <p>What can you infer about the stability of the system from the pole-zero locations?</p>	15	CO2